
UNCLASSIFIED

 AD-E403 691

Technical Report ARWSE-TR-14028

PREFIX VERSUS POSTFIX IN C++

Tom Nealis

October 2015

Approved for public release; distribution is unlimited.

AD

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND
ENGINEERING CENTER

Weapons and Software Engineering Center

Picatinny Arsenal, New Jersey

UNCLASSIFIED

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially
available products or services does not constitute official endorsement by or
approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent
disclosure of its contents or reconstruction of the document. Do not return
to the originator.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

October 2015
2. REPORT TYPE

Final
3. DATES COVERED (From – To)

4. TITLE AND SUBTITLE

PREFIX VERSUS POSTFIX IN C++

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHORS

Tom Nealis

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC, WSEC
Fire Control Systems & Technology Directorate
(RDAR-WSF-M)
Picatinny Arsenal, NJ 07806-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC, ESIC
Knowledge & Process Management (RDAR-EIK)
Picatinny Arsenal, NJ 07806-5000

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

Technical Report ARWSE-TR-14028
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 Many coders today do not take the time to consider the implications of the code they write. Not all code is
created equal, and something as seemingly harmless as incrementing or decrementing via prefix instead of a
postfix notation can have a considerable effect on performance. Modern day compilers can and do optimize
certain common instances of code involving this notation, but it should not be relied upon in a well-developed
and maintained code base.

15. SUBJECT TERMS

Prefix increment Prefix decrement Postfix increment Postfix decrement

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

9

19a. NAME OF RESPONSIBLE PERSON

Tom Nealis
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area

code) (973) 724-8048

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

Approved for public release; distribution is unlimited.

i

CONTENTS
Page

Introduction 1

Methodology 1

Conclusions 3

Distribution List 5

UNCLASSIFIED

Approved for public release; distribution is unlimited.

1

INTRODUCTION

Compilers today have become very good at optimizing code that has not been written in the
most efficient manner possible. Many coders often take this for granted and do not spend time
concerning themselves with the performance of their code and mistakenly rely on compilers to detect
and correct inefficiencies. One simple example of why coders should pay attention and not rely on
compilers to do the thinking for them is when to use prefix or postfix in their code.

Most coders coming out of school today all know the basic difference between these two

lines of code:

function(++variable);
function(variable++);

The basic difference is that the first function call will be sent an incremented variable,

whereas the second one will receive the current value of the variable and then the variable will be
incremented upon return from the function. So, many coders will be comfortable with that knowledge
but not think there is any difference between the next two lines of code:

 variable++;
 ++variable;

In the end, both of these lines of code will increment the variable, but the concern is how.

METHODOLOGY

In order to understand the difference between these two notations, what is produced by the
complier must be discussed. Without optimization, the compiler must create a copy in order to
accomplish a postfix increment or decrement. The prefix does not require this and is, therefore,
more efficient. Most modern compilers can detect and optimize the simple cases like the cases
involving basic built-in types. This should not be relied upon and it should be a habit to always use
prefix unless specifically needed to postfix. Take for example the following code:

 for(int i = 0; i < SomeNum; i++) { doAnything; }

Most college professors and books will show loops written in this way. So, coders that have
seen loops mostly written in this way will continue to write them in the same fashion. It is not
necessary to postfix increment for this loop. Even though most compilers will optimize this properly
in most cases, this should always be written for loop:

 for(int i = 0; i < SomeNum; ++i) { doAnything; }

So let’s take a look at some assembly. Modern compilers will produce the following after they
optimize this code:

//prefix built in type
; 21 : for(auto i = 0u; i < 10000; ++i)
mov DWORD PTR _i$1[ebp], 0
jmp SHORT $LN3@wmain
mov eax, DWORD PTR _i$1[ebp]
add eax, 1
mov DWORD PTR _i$1[ebp], eax
cmp DWORD PTR _i$1[ebp], 10000; 00002710H
jae SHORT $LN1@wmain

UNCLASSIFIED

Approved for public release; distribution is unlimited.

2

; 22 :;
jmp SHORT $LN2@wmain

//postfix built in type
; 21 : for(auto i = 0u; i < 10000; i++)
mov DWORD PTR _i$1[ebp], 0
jmp SHORT $LN3@wmain
mov eax, DWORD PTR _i$1[ebp]
add eax, 1
mov DWORD PTR _i$1[ebp], eax
cmp DWORD PTR _i$1[ebp], 10000; 00002710H
jae SHORT $LN1@wmain
; 22 :;
jmp SHORT $LN2@wmain

As one can see, the optimized code is exactly the same. The following loops are an example

of code that is a little trickier for the compiler to optimize:

 auto& it = my_ints.begin();
 while(it != my_ints.end())
 it++;

 auto& it = my_ints.begin();
 while(it != my_ints.end())
 ++it;

The variable ‘it’ is a vector iterator. The prefix and postfix increment line of code produces
the following assembly code:

//iterator prefix
00F755E2 mov ecx, dword ptr[it]
00F755E5 call std::_Vector_iterator<std::_Vector_val<std::_Simple_types<unsigned int> > >::operator++ (0F711F9h)
00F755EA jmp wmain + 0EEh (0F7558Eh)

//iterator postfix
002E5A12 push 0
002E5A14 lea eax, [ebp - 17Ch]
002E5A1A push eax
002E5A1B mov ecx, dword ptr[it]
002E5A1E call std::_Vector_iterator<std::_Vector_val<std::_Simple_types<unsigned int> > >::operator++ (02E10FFh)
002E5A23 lea ecx, [ebp - 17Ch]
002E5A29 call std::_Vector_iterator<std::_Vector_val<std::_Simple_types<unsigned int> >
>::~_Vector_iterator<std::_Vector_val<std::_Simple_types<unsigned int> > >(02E119Ah)
002E5A2E jmp wmain + 0EEh (02E59BEh)

As one can clearly see, the compiler was unable to optimize the postfix. It had to create the
copy. Figure 1 displays how long it takes to run through the previous code for a certain number of
iterations.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

3

Figure 1
Prefix versus postfix - iterators

CONCLUSIONS

The C++ coders need to take the time to understand implications of the code that they create.
Some of the most benign looking code can have a significant impact on the performance of a piece
of software that can, in turn, affect the device/system that is running it. An easily addressable
example of this is the prefix and postfix notation. A coder should always use prefix notation unless
they have to use postfix.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 100000 200000 300000 400000 500000 600000

Ti
m

e
(u

s)

Iterations

Prefix versus postfix - iterators

Prefix Iterator

Postfix Iterator

UNCLASSIFIED

Approved for public release; distribution is unlimited.

5

DISTRIBUTION LIST

U.S. Army ARDEC
ATTN: RDAR-EIK
 RDAR-WSF-M, T. Nealis
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

GIDEP Operations Center
P.O. Box 8000
Corona, CA 91718-8000
gidep@gidep.org

UNCLASSIFIED

Approved for public release; distribution is unlimited.

6

Patricia Alameda

Patricia Alameda

Andrew Pskowski

